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Abstract

Introduction:We sought lipid-metabolic biomarkers involved in the processes under-

lying cognitive decline and detected them in association with Alzheimer’s disease (AD)

phenotypes.

Methods: A least absolute shrinkage and selection operator logistic regression model

was used to select lipids that best classified cognitive decline defined by a fast-annual

rate of cognition. Lipid summary scores were constructed as predictors of cognitive

decline by using this model. Multivariable-adjusted models tested the associations of

risk score with AD phenotypes.

Results: A model incorporating 17 selected lipids showed good discrimination and cal-

ibration. The lipid risk score was positively associated with the baseline Alzheimer

Disease Assessment Scale—13-item cognitive subscale (ADAS-Cog13) score and cere-

brospinal tau protein level, and predicted cognitive diagnoses. Additional results show-

ing that individuals with increased lipid risk scores had rapid change rates of ADAS-

Cog13 and brain atrophy further corroborated the predictive role of lipids.

Discussion: A panel of blood lipids instead of individual lipid molecules could better

diagnose and predict cognitive decline.

K EYWORD S
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1 INTRODUCTION

Cognitive decline is a gradually accumulating pathological process

involving silent progressions into mild cognitive impairment (MCI)

and dementia.1 Data-driven investigations have revealed that the
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prevalence of cognitive decline involving mild deficits and dementia

among individuals aged over 65 years was approximately 20% to 30%

in America and 8% in China.2 In addition, the rapid increase in the

aging population worldwide has also accelerated the prevalence with

cognitive impairment.3,4 However, there is still a lack of convenient
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pathways or biomarkers to identify cognitive decline, especially during

the early stages of the Alzheimer’s disease (AD) spectrum.5 Notably,

blood metabolites have been suggested as promising biomarkers of

pre-symptomatic pathological processes to facilitate identification of

individuals with worse cognitive trajectories in early or later life,6-9

thereby enhancing the efficiency of recruitment into clinical trials and

early intervention.

Polymorphisms at apolipoprotein-encoding genes involved in lipid

transport and metabolism, such as apolipoprotein E (APOE) and clus-

terin (CLU), are deemed to be associated with an increased risk of AD,

indicating the underlying predictive roles of lipid metabolism in early

diagnosis.10-12 With advances in mass spectrometry technology and

analytical software, some novel platforms have used untargeted or

targeted lipidomics approaches for analyses of disease processes and

relevant biomarkers.13 Multiplatform screening investigations have

determined the roles of phosphatidylcholine (PC) molecules in diag-

nosingMCI and AD,14 supporting specific associations of abnormal PC

metabolism with poor memory performance and cognitive function in

normal aging.15 Similarly, a lipidomic study suggested that the plasma

metabolite molecules distinguishing AD patients from controls were

mostly derived from lipids, such as cholesteryl esters (CE).16 Individu-

alswithADshowa comparative decrease in plasma sphingolipid (SP16)

levels and an increase in ceramide (CM16) levels.17 Collectively, these

studies support the hypothesis that lipid-metabolic dysregulations are

present in the early and late phases of AD.

Invasive procedures for sampling cerebrospinal fluid (CSF) biomark-

ers and expensive imaging examinations, such as positron emission

tomography (PET) for amyloid imaging, have generally not been applied

for screening or determining at-risk populations with cognitive decline

to date. Therefore, we aimed to identify a comprehensive panel of lipid

signatures, instead of individual molecules, as a predictor of cognitive

decline via tracing the trajectory of cognitive aging. We analyzed the

data for 579 plasma lipids of 374 non-demented participants from the

Alzheimer’s DiseaseNeuroimaging Initiative (ADNI) database. To addi-

tionally verify the effectiveness of these reliable plasma lipids in pre-

dicting poor cognition, we examined the associations of the selected

lipids with AD phenotypes.

2 METHODS

2.1 Participants

All data were obtained from the ADNI database (http://adni.

loni.usc.edu). The ADNI was launched in 2003 as a public-private

partnership led by principal investigator Michael W. Weiner. Its

primary goal is to test whether serial magnetic resonance imaging

(MRI), PET, biological markers, and clinical and neuropsychological

assessment can be combined to measure the progression of MCI

and early AD. For up-to-date information, see www.adni-info.org.

ADNI was approved by the institutional review boards of all partici-

pating institutions. Written informed consent was obtained from all

participants and collateral informants at each site.

Highlights

• Seventeen lipids were identifiedwith favorable prediction

and calibration efficacy.

• A panel of selected lipids independently predicted accel-

erated cognitive decline.

• Lipids associated with change rates of cognitive perfor-

mance and brain atrophy.

• Selected lipids predicted diverse diagnoses and a trend for

progressive outcomes.

RESEARCH INCONTEXT

1. Systematic review: We systematically searched PubMed

and primary literature about the roles of blood-based

lipid signatures in Alzheimer’s disease (AD) neuropathol-

ogy and phenotypes. Relatively heterogeneous studies

focusing on AD metabolism relevant to lipid signatures

suggest a pressing need to figure out whether lipids are

promising diagnostic and predictive biomarkers of cogni-

tive decline.

2. Interpretation: The study uncovered a panel of lipidswith

favorable predictive and calibrated efficacy that identi-

fied cognitively declined individuals, and reported some

novel associations of lipid signature with worse cogni-

tive performance, brain atrophy, progressive cognitive

decline, and cognitive diagnoses for non-dementia elders.

These findings deepen our knowledge about the roles of

lipids in the early stage of AD.

3. Future directions: Further research is warranted to focus

on blood lipids in the associations with longitudinal

changes in AD neuropathology. Integrating genetic vari-

ations and other biological information in the future may

enhance the adaptability of the existing models.

We studied 374 ADNI-1 non-demented elders with available data

for plasma lipid molecules, CSF core biomarkers, and cognitive perfor-

mance and neuroimaging assessments. These included 128 cognitively

normal (CN) individuals and 246 persons with MCI. We further clas-

sified MCI patients as stable MCI (sMCI) and progressive MCI (pMCI)

patients on the basis of diagnosis of conversion to AD during at least

one follow-up year (see detailed flowchart in Figure S1 in supporting

information). Themean andmaximum follow-up period was 5.06 years

(standard deviation = 2.91) and 10 years, respectively. Table S1 in sup-

porting information shows the detailed follow-up durations of differ-

ent cognitive statuses. ADNI evaluated the general cognition of these

participants annually using the Alzheimer Disease Assessment Scale–

13-itemcognitive subscale (ADAS-Cog13) and the Mini-Mental State

http://adni.loni.usc.edu
http://adni.loni.usc.edu
http://www.adni-info.org
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Examination (MMSE). All available data were obtained from the ADNI

database.

2.2 Plasma lipid signaturemeasurements

The Alzheimer Disease Metabolomics Consortium (ADMC) deposited

the generated baseline targeted lipidomic data for ADNI plasma

samples to the Laboratory of Neuroimaging (LONI). ADMC uses

metabolomics and lipidomics platforms to cover a broad area of

biochemistry and to enable interrogation of the AD metabolome

with the goal of building a metabolomics database for ADNI. Anal-

ysis of plasma extracts was performed on an Agilent 6490 QQQ

mass spectrometer with an Agilent 1290 series high-performance

liquid chromatography (HPLC) system and a ZORBAX eclipse plus

C18 column (2.1 × 100 mm 1.8 𝜇m, Agilent). Mass spectrome-

try analysis was performed in the positive ion mode with dynamic

scheduled multiple reaction monitoring (MRM). Mass spectrometry

results were integrated using Agilent software (MassHunter B9.00).

The ADMC lab eventually examined a total of 579 plasma lipid

molecules.

2.3 CSFmeasurements and classification

In the ADNI database, CSF amyloid beta (A𝛽42), phosphorylated tau

(p-tau), and total tau (t-tau) concentrations were measured by the

multiplex xMAP Luminex platform (Luminex Corp, Austin, TX) with

research-use-only INNOBIA AlzBio3 (Ghent, Belgium) immunoassay

kit-based reagents. ADNI participants with available CSF biomarkers

data at baseline were grouped according to the CSF levels of A𝛽42 and

p-tau. Amyloid abnormal (A+) or normal (A–) statuses were defined

by a cutoff value of 1.11 for the florbetapir standardized uptake value

ratio (SUVR) and 192 pg/mL for CSF A𝛽42. Tau pathological abnormal

(T+) or normal (T–) statuseswere defined by a cutoff value of 23 pg/mL

for CSF p-tau level.18 In addition, borderline cases, which were ± 5%

from the original cutoffs, were excluded to avoid reaching conclusions

derived from those cases.19,20

2.4 Neuroimaging assessments

Structural MRI was conducted using a Siemens Trio 3.0 tesla (T)

scanner or 1.5 T scanner (Siemens, Erlangen, Germany). For the

3.0 and 1.5 T MRI images, Free-surfer software version 5.1 and 4.3

image processing frameworks were used to estimate regional volume,

respectively. For amyloid PET imaging, the averaged 18F-florbetapir

retention ratio of four cortical gray matter regions (frontal, precuneus,

parietal cortex, and anterior-cingulate) was applied for the global 18F-

florbetapir SUVR, and the cerebellum was considered the reference

region.

2.5 Analytic methods

2.5.1 Training and validation sets

All participants were randomly divided into two independent sets to

facilitate internal validation: the training set consisted of 299 individu-

als, and the never-before-seen validation set contained the remaining

75 persons. Between-group differences in demographic, neuropsy-

chologic, and neuroimaging data were tested by chi-squared tests

for categorical variables and Mann-Whitney U tests for continuous

non-normally distributed variables.

2.5.2 Cases and controls

We used the linear mixed effect model to estimate the individual’s

change rate of cognitive decline by calculating the rate of change

in the MMSE score (see Method section in supporting information).

The MMSE score, as the dependent variable, was log-transformed

to ensure normality. Each individual’s rate of change in MMSE was

extracted from the model for subsequent analyses. Of note, we con-

structed a case-control design to classify participants into two groups

according to cognitive changes in MMSE: individuals with rates of

change worse than the mean were assigned into case group with rapid

cognitive progression, and others were classified as controls with slow

cognitive decline.

2.5.3 The selection and assessment of predictive
lipids

The least absolute shrinkage and selection operator (LASSO) logis-

tic regression model was applied for selection of a subset of baseline

plasma lipids related to cognitive decline (see Method section in sup-

porting information).21 Thismachine-learning algorithm identifies spe-

cific variables that predict a given dependent variable, and allows opti-

mal variable weights for this prediction. In the training set, 579 lipids

were incorporated into the LASSO model we developed for predict-

ing cognitive decline (ie, well-defined case events). A 10-fold cross-

validation procedure served to optimize the penalization and weight

parameters of this LASSO model.6 Finally, we estimated the discrimi-

natory efficacy of this model in the training set by quantifying the area

under the receiver-operator characteristic (ROC) curve, and similarly

tested the generalizability of this model in the validation set. In addi-

tion, the Hosmer-Lemeshow tests and calibration curves were used to

estimate the calibration efficacy of this model in both sets.

2.5.4 Construction of the lipidomic risk score

To explore the impact of all selected lipid profiles on cognitive decline,

we constructed a lipidomic summary risk score for each participant by
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multiplying the z-scored baseline lipid level times the corresponding

standardized weights from LASSO regression. Discrimination and

calibration performance for the model incorporating clinical variables

(age, sex, years of education, and the status of APOE-𝜀4 and lipid-

lowering medication), and the risk score was further assessed in the

training set and confirmed in the validation set. The Delong test was

conducted to estimate the statistical differences in discriminatory

efficacy among different models by plotting ROC curves.22 Multivari-

able logistic regression models combining clinical variables and CSF

core biomarkers detected the independently predictive effect of the

lipidomic risk score.

2.5.5 Analyses of cross-sectional and longitudinal
associations

Weappliedmultivariable linear regression to test cross-sectional asso-

ciations of the lipidomic risk score with baseline ADAS-Cog13 score

and CSF core biomarkers. We used a linear mixed effect model to

assess the longitudinal associations of baseline risk score with the

change rates of cognitive performance (ADAS-Cog13) and brain struc-

tural measures. A significant value for the interaction term between

time and risk score in the linear mixed model indicated that lipids

affected the rate of cognitive change (seeMethod section in supporting

information). The Cox proportional hazards model was used to assess

the impact of the lipidomic risk score on the time of conversion from

MCI to AD. Logistic regression analysis was used to assess the pre-

dictive effects of the lipidomic risk score on diagnostic categories. All

regression analyses were adjusted for clinical variables. Analyses of

brain structuralmeasureswere additionally adjusted for total intracra-

nial volume to account for variations of head size.

Statistical significance was set at a two-sided P < .05. The following

variableswere z-scored to ensure normality prior to subsequent analy-

ses: lipidomic risk score, ADAS-Cog13 score, CSFA𝛽42, CSFp-tau, CSF

t-tau, as well as hippocampal and lateral ventricular volumes. All statis-

tical analyses were performed using R version 3.5.1 software program

and IBM SPSS Statistics 25.

3 RESULTS

3.1 Demographic and clinical characteristics of the
study population

In the training set, individuals in the case group included a higher pro-

portion of APOE-𝜀4 carriers, and were more likely to show worse cog-

nition (ADAS-Cog13 andMMSE scores) and brain atrophy (lateral ven-

tricular and hippocampal volumes) than controls (All P < .05; Table S2

in supporting information). Similarly, in the validation set, differences

were still significant in terms of the proportion of APOE-𝜀4 carriers,

cognitive performance, and hippocampal volume between cases and

controls.

3.2 LASSO-weighted lipid signature and cognitive
decline

The LASSO approach identified 17 lipids in a sparse, high-dimensional

logistic model in the training set (Figure 1A and B). These lipids dis-

played favorable prediction efficacy, with an area under the curve

(AUC)of 0.768 (95%confidence interval [CI], 0.715–0.821) in the train-

ing set and0.747 (95%CI, 0.627–0.867) in the validation set (Figure 1C

and D). Figure 2 provides an overview of the weighted coefficients of

the 17 lipids. The lipidomic risk scores were calculated by a linear com-

bination of 17 lipids that reflected the risk of cognitive decline. In the

training set, the cases showing fast cognitive decline presented higher

lipidomic risk scores than controls (0.509 ± 0.196 vs −0.051 ± 0.156,

P < .001), which was further confirmed in the validation set (0.097 ±
0.208 vs −0.060± 0.132, P < .001). Differences in the 17 plasma lipids

between participants with or without cognitive decline are shown in

detail in Table S3 in supporting information.

Subsequently, the Hosmer-Lemeshow test and ROC analysis were

used to assess the calibration and discriminatory efficacies of a model

with clinical variables and risk score as independent variables. The

model presented favorable calibration (P = .809; Figure S2A in sup-

porting information) and prediction efficacy (AUC = 0.789, 95% CI =
0.737–0.840; Figure S2B) both in the training and the validation sets

(Figure S2C andD).

The discriminatory efficacy of the lipidomic risk score was further

detected among all participants (Figure S3 in supporting information).

Addition of the risk score to the model significantly improved the

capacity to predict cognitive declined outcomes (AUC = 0.779, 95%

CI = 0.712–0.845) in comparison to the reference model with clinical

variables (P = .014). The polygenic hazard score (PHS) has been gen-

erally applied for prediction of cognitive decline via evaluation ofAPOE

and31other genetic variants among the risk population. The reference

model assessing PHS yielded anAUCof 0.766 (95%CI= 0.715–0.818).

As expected, the model including PHS, lipid signature, and clinical vari-

ables yielded the best improvement in prediction (Figure 3).

The logistic regression model showed that the lipidomic risk score

was associated with cognitive decline independent of clinical covari-

ates, especially the levels of CSFA𝛽42, p-tau, and t-tau (odds ratio [OR]

= 3.15, 95%CI= 1.73–5.77; Table S4 in supporting information).

3.3 Lipid risk scorewas associatedwith
neuropsychiatric assessments, CSF biomarkers, and
brain structural measures

Cross-sectional analyses showed the positive associations of the risk

score with ADAS-Cog13 (𝛽 = 0.134, P = .007; Table 1), CSF p-tau level

(𝛽 = .161, P= .025), and CSF t-tau level (𝛽 = 0.185, P= .010). Longitudi-

nal investigations indicated interactions between lipidomic risk score

and time with a higher risk score as predictors of faster annual wors-

ening in ADAS-Cog13 and neuroimaging MRI findings (ADAS-Cog13:
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F IGURE 1 Potential lipid predictor selection using least absolute shrinkage and selection operator (LASSO) logistic regression and the
predictive accuracy of lipid signatures. A, Selection of the parameters in the LASSOmodel by 10-fold cross-validation based onminimum criteria.
The vertical dotted line points to the optimal lambda value and the number of optimal predictors. B, The pathway of coefficients among all lipid
signatures. The 17 lipid signatures were selected via LASSO regression. C andD, Receiver operating characteristic curves of the lipid signatures in
the training and validation sets, respectively
Abbreviation: AUC, area under the curve.

𝛽 = 0.045, P = .001; hippocampus: 𝛽 = −0.014, P = .007; lateral ventri-

cles: 𝛽 = 0.020, P< .001).

3.4 Lipidomic risk score associatedwith diagnostic
categories

Statistical comparisons indicated the possible predictive roles of the

lipidomic risk score in the following diagnostic groups: case versus

control, sMCI versus CN, pMCI versus CN, A+ versus A–, and A+T+

versus A–T– (Figure 4). The increased lipidomic risk score was corre-

lated with a 1.86-fold increase in the odds of cognitive decline (95%

CI = 1.428–2.432; Figure 5). Similarly, a higher lipidomic risk score

produced a 1.75-fold increase in the odds of pMCI versus CN (95%

CI = 1.259–2.436) and a 1.34-fold increase in the odds of sMCI ver-

sus CN (95% CI = 1.015–1.811). There was a modest trend toward

a 1.39-fold increase in the probability of A+T+ with the increase in

lipid risk score compared to A–T– (95% CI = 0.920–2.095). No corre-

lations were found between the lipid risk score and other diagnostic

categories.
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F IGURE 2 Seventeen lipid predictors of cognitive decline weighted by least absolute shrinkage and selection operator (LASSO) logistic
regression. Color-codedwith the same classification annotated in the figure
Abbreviations: CE, cholesteryl ester; LPE, lysophosphatidylethanolamine; PC, phosphatidylcholine; Cer, ceramide; dhCer, dihydroceramide; GM3,
ganglioside.

The Cox proportional hazard model was then used in individ-

uals with a baseline diagnosis of MCI to determine the predictive

role of the lipidomic risk score in the conversion to AD. Indi-

viduals with an increased lipid risk score had a modest trend

toward disease progression (hazard ratio [HR] = 1.124, 95%

CI= 0.944–1.340).

4 DISCUSSION

The ideal peripheral biomarkers would provide useful indications of

cognitive decline at an early stage, because irreversible shifts would

have developed silently in the brain by the time perceivable clinical

symptoms appear. In this longitudinal study of non-demented elderly

participants, a panel of 17 plasma lipid molecules was identified as a

potential predictor of cognitive decline with a good trade-off between

predictive ability (high AUC) and sparsity (low number of lipids).

Furthermore, this 17-lipid signature was positively associated with

the baseline ADAS-Cog13 score and levels of CSF tau protein and

the risk of diverse diagnostic categories. Individuals with higher lipid

risk scores showed faster change rates of ADAS-Cog13 and brain

atrophy (hippocampus and lateral ventricles) during follow-up. These

results indicated that the baseline plasma lipid combination, but not

individual lipids, should be considered a valuable noninvasive tool to

assess and predict cognitive decline. By summarizing the findings for

multiple lipids, our study expanded the possible role of aberrant lipids

metabolism in the cognitive decline, presenting a major advantage

over previous explorations.

The selected lipid signatures covered sterol lipids, acylcarnitine,

phospholipids, and sphingolipids. Several previous studies examined

the underlying mechanisms of lipid signatures in their associations

with cognitive decline. Acyl-coenzyme A: cholesterol acyltransferases

(ACAT) are critical coenzymes in the cholesterol esterification path-

way. Animal studies have shown improvements in the cognitive func-

tions of AD mice with increased levels of CEs via inhibition of

ACAT.16 Plasma acylcarnitines play a role in damaged fatty acid beta-

oxidation in mitochondria and are positively correlated with total tau

proteins,23,24 which support the adverse effects of mitochondrial dys-

functions in tau mediated neurodegeneration.25 Ceramides can exac-

erbate the A𝛽 production by stabilizing the A𝛽 precursor protein-

cleaving enzyme.25 In addition, ceramides can induce mitochondrial

impairment and cell apoptosis, which might contribute to neurode-

generative changes.8,26 Similar studies revealed that lower levels of

PC were associated with increased AD risk and accelerated cognitive

decline.13,14,25 This association has been deemed to relate to dysfunc-

tion of cellular lipid production. The essential elements in the synthesis

of certain phospholipids are the contacts between endoplasmic reticu-

lum and mitochondria.27,28 Previous studies found that these contacts

were impaired in AD, and various APOE alleles interfered with these

contacts.29-31
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F IGURE 3 Receiver operating characteristic curve analysis for
prediction of cognitive decline
Abbreviation: AUC, area under the curve; PHS, polygenic hazard score.

We investigated a panel of plasma lipids as a potential diagnostic

and predictive biomarker of cognitive decline in the early stage of

dementia by incorporating non-demented individuals. These findings

were thus less driven by the complex status of dementia. A second

strength is the usage of change rates of cognitive performance for

classifications of individuals with or without rapid cognitive decline.

This approach facilitated selection of lipids that were closely asso-

ciated with longitudinal trajectories of cognition based on a robust

LASSO-logistic model. Of note, the discriminatory and calibration

efficacies of these lipids were well validated in an unseen data set.

Subsequent analyses of the associations between the panel of lipids

and AD phenotypes enhanced the possible roles of lipids in predic-

tion of cognitive decline. Consistent with our subsequent findings,

previous cross-sectional studies focused on associations of sets of

coregulated plasma lipids with AD phenotypes in a mixed population

including individuals with AD.25 However, our primary findings were

based on longitudinal changes in cognition and our objective was to

identify some lipids that could facilitate the diagnosis or prediction

of cognitive decline, which was different from previous efforts. The

contributions of individual lipids may be small, but the summation of

several lipids could improve prediction and reflect the lipidmetabolism

of each person, highlighting the immense significance of this study. In

addition, the risk estimates of the established lipid risk score remained

significant after adjustment for clinical variables, which underscored

the independent effect of the lipid signature on cognitive decline.

The current study had several limitations. Although common vas-

cular factors and body mass index may disturb lipid metabolism, the

relatively small sample sizes of the analysis groups precluded full

adjustment for potential variables, except for lipid-lowering medica-

tion. Moreover, estimation of the rate of cognitive decline using the

TABLE 1 Modeling the association of lipid risk score on clinical
outcomes

Model 𝜷 Coefficient P

Cross-sectional

ADAS-Cog13 0.134 0.007

CSF A𝛽42 −0.124 0.055

CSF t-tau 0.185 0.010

CSF p-tau 0.161 0.025

Longitudinal

ADAS-Cog13

Main effect 0.091 0.002

Interaction time 0.045 0.001

Hippocampus

Main effect −0.121 0.003

Interaction time −0.014 0.007

Lateral ventricles

Main effect 0.073 0.078

Interaction time 0.020 <0.001

Cox (Hazard ratio) Statistic p-value

MCI conversion to AD dementia 1.124(0.944-1.340) 0.190

Abbreviations: A𝛽42, 42-aminoacid isoform of amyloid beta; AD,

Alzheimer’s disease; ADAS-Cog, the Alzheimer’s Disease Assessment

Scale-13-item cognitive subscale; Cox, Cox proportional hazard model;

CSF, cerebrospinal fluid;MCI, mild cognitive impairment; p-tau, hyperphos-

phorylated tau protein; t-tau, total tau protein.

rate of change in theMMSE score is a crude approach. Finally, we failed

to clarify the roles of lipids in distinguishing pMCI from sMCI, which

may be caused by the existing aberrant lipid metabolism both in sMCI

and pMCI individuals.

5 CONCLUSION

Our findings suggest that a combination of lipids, including acylcarni-

tine, sterol lipid, phospholipid, and sphingolipid, may have a valuable

role in predicting aggravated cognitive performance, brain atrophy,

and different diagnostic categories in the early phase. A comprehen-

sive panel of blood lipids instead of evaluations of individual lipid

molecules can more effectively identify individuals effectively who are

undergoing or have the potential to suffer from subsequent cognitive

decline. Further integration of genetic variations and other biological

information may enhance the adaptability of the existing models

and lead to a better understanding of the biological context in which

relevant molecules act.
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